10 research outputs found

    DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle

    Get PDF
    Physical mapping of DNA can be used to detect structural variants and for whole-genome haplotype assembly. Here, the authors use CRISPR-Cas9 and high-speed atomic force microscopy to ‘nanomap’ single molecules of DNA

    3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    Get PDF
    AbstractFollowing the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years

    DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle.

    No full text
    Progress in whole-genome sequencing using short-read (e.g., \u3c150 \u3ebp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new nanomapping method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM nanomapping technique can be complementary to both sequencing and other physical mapping approaches
    corecore